Search results
Results from the WOW.Com Content Network
The decorator pattern is a design pattern used in statically-typed object-oriented programming languages to allow functionality to be added to objects at run time; Python decorators add functionality to functions and methods at definition time, and thus are a higher-level construct than decorator-pattern classes.
It implicitly calls the IntoIterator::into_iter method on the expression, and uses the resulting value, which must implement the Iterator trait. If the expression is itself an iterator, it is used directly by the for loop through an implementation of IntoIterator for all Iterators that returns the iterator unchanged.
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
nested blocks of imperative source code such as nested if-clauses, while-clauses, repeat-until clauses etc. information hiding: nested function definitions with lexical scope; nested data structures such as records, objects, classes, etc. nested virtualization, also called recursive virtualization: running a virtual machine inside another ...
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per iteration. The header often declares an explicit loop counter or loop variable. This allows the body ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.