Search results
Results from the WOW.Com Content Network
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
It implicitly calls the IntoIterator::into_iter method on the expression, and uses the resulting value, which must implement the Iterator trait. If the expression is itself an iterator, it is used directly by the for loop through an implementation of IntoIterator for all Iterators that returns the iterator unchanged.
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per iteration. The header often declares an explicit loop counter or loop variable. This allows the body ...
The decorator pattern is a design pattern used in statically-typed object-oriented programming languages to allow functionality to be added to objects at run time; Python decorators add functionality to functions and methods at definition time, and thus are a higher-level construct than decorator-pattern classes.
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
-- Getting rid of the global variables issue (cannot be used in parallel)-- from a set of old sources, without the need to change that code's-- logic or structure.--procedure Nesting_example_1 is type Buffer_type is array (Integer range <>) of Integer; procedure Decompress (compressed: in Buffer_type; decompressed: out Buffer_type) is-- Here ...