Search results
Results from the WOW.Com Content Network
Resonant ultrasound spectroscopy (RUS) is a laboratory technique used in geology and material science to measure fundamental material properties involving elasticity. This technique relies on the fact that solid objects have natural frequencies at which they vibrate when mechanically excited.
Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. [1] This type of resonance occurs when air is forced in and out of a cavity (the resonance chamber ), causing the air inside to vibrate at a specific natural frequency .
The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. [1] It measures the resonant frequencies in order to calculate the Young's modulus , shear modulus , Poisson's ratio and internal friction of predefined shapes like ...
However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases. [3] All systems, including molecular systems and particles, tend to vibrate at a natural frequency depending upon their structure; this frequency is known as a resonant frequency or resonance frequency.
Ferromagnetic resonance was experimentally discovered by V. K. Arkad'yev when he observed the absorption of UHF radiation by ferromagnetic materials in 1911. A qualitative explanation of FMR along with an explanation of the results from Arkad'yev was offered up by Ya. G. Dorfman in 1923, when he suggested that the optical transitions due to Zeeman splitting could provide a way to study ...
Energy level diagram showing relationship between Rayleigh, Raman, and resonance Raman scattering and fluorescence. Resonance Raman spectroscopy (RR spectroscopy or RRS) is a variant of Raman spectroscopy in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. [1]
Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency or resonant frequency) closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in ...
It is convenient to denote cavity frequencies with a complex number ~ = /, where = (~) is the angular resonant frequency and = (~) is the inverse of the mode lifetime. Cavity perturbation theory has been initially proposed by Bethe-Schwinger in optics [1], and Waldron in the radio frequency domain. [2]