Ad
related to: inscribed circle radius formula of triangle basekutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
The large triangle that is inscribed in the circle gets subdivided into three smaller triangles, all of which are isosceles because their upper two sides are radii of the circle. Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180° minus the apex angle at the circle's center.
The radius of the inscribed circle of an isosceles triangle with side length , base , and height is: [16] 2 a b − b 2 4 h . {\displaystyle {\frac {2ab-b^{2}}{4h}}.} The center of the circle lies on the symmetry axis of the triangle, this distance above the base.
The area A of any triangle is the product of its inradius (the radius of its inscribed circle) and its semiperimeter: A = r s . {\displaystyle A=rs.} The area of a triangle can also be calculated from its semiperimeter and side lengths a, b, c using Heron's formula :
Familiar examples of inscribed figures include circles inscribed in triangles or regular polygons, and triangles or regular polygons inscribed in circles. A circle inscribed in any polygon is called its incircle, in which case the polygon is said to be a tangential polygon. A polygon inscribed in a circle is said to be a cyclic polygon, and the ...
In every triangle a unique circle, called the incircle, can be inscribed such that it is tangent to each of the three sides of the triangle. [19] About every triangle a unique circle, called the circumcircle, can be circumscribed such that it goes through each of the triangle's three vertices. [20]
If is the radius of the incircle of the triangle, then the triangle can be broken into three triangles of equal altitude and bases , , and . Their combined area is A = 1 2 a r + 1 2 b r + 1 2 c r = r s , {\displaystyle A={\tfrac {1}{2}}ar+{\tfrac {1}{2}}br+{\tfrac {1}{2}}cr=rs,} where s = 1 2 ( a + b + c ...
Ad
related to: inscribed circle radius formula of triangle basekutasoftware.com has been visited by 10K+ users in the past month