Search results
Results from the WOW.Com Content Network
White noise draws its name from white light, [2] although light that appears white generally does not have a flat power spectral density over the visible band. An image of salt-and-pepper noise In discrete time , white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random variables with zero mean ...
Two simulated time series processes, one stationary and the other non-stationary, are shown above. The augmented Dickey–Fuller (ADF) test statistic is reported for each process; non-stationarity cannot be rejected for the second process at a 5% significance level. White noise is the simplest example of a stationary process.
For example, to calculate the ... If a time series {} ... The autocorrelation of a continuous-time white noise signal will have a strong peak ...
If the forecasting method is working correctly, successive innovations are uncorrelated with each other, i.e., constitute a white noise time series. Thus it can be said that the innovation time series is obtained from the measurement time series by a process of 'whitening', or removing the predictable component.
First, white noise is a generalized stochastic process with independent values at each time. [12] Hence it plays the role of a generalized system of independent coordinates, in the sense that in various contexts it has been fruitful to express more general processes occurring e.g. in engineering or mathematical finance, in terms of white noise.
Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...
Example of voice waveform and its ... is a white noise process with zero mean and innovation ... to is a time series (discrete time) with zero mean. Suppose that it ...
The noise components are filtered out, but not quite completely; the signal components are retained, but not quite completely; and there is a transition zone which is partly accepted. In contrast, the signal subspace approach represents a sharp cut-off: an orthogonal component either lies within the signal subspace, in which case it is 100% ...