enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Innovation (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Innovation_(signal_processing)

    If the forecasting method is working correctly, successive innovations are uncorrelated with each other, i.e., constitute a white noise time series. Thus it can be said that the innovation time series is obtained from the measurement time series by a process of 'whitening', or removing the predictable component.

  3. Correlogram - Wikipedia

    en.wikipedia.org/wiki/Correlogram

    For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram. The correlogram is a commonly used tool for checking randomness in a data set. If random, autocorrelations should be near zero for any and all time ...

  4. White noise - Wikipedia

    en.wikipedia.org/wiki/White_noise

    White noise draws its name from white light, [2] although light that appears white generally does not have a flat power spectral density over the visible band. An image of salt-and-pepper noise In discrete time , white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random variables with zero mean ...

  5. Signal subspace - Wikipedia

    en.wikipedia.org/wiki/Signal_subspace

    The noise components are filtered out, but not quite completely; the signal components are retained, but not quite completely; and there is a transition zone which is partly accepted. In contrast, the signal subspace approach represents a sharp cut-off: an orthogonal component either lies within the signal subspace, in which case it is 100% ...

  6. Wold's theorem - Wikipedia

    en.wikipedia.org/wiki/Wold's_theorem

    In statistics, Wold's decomposition or the Wold representation theorem (not to be confused with the Wold theorem that is the discrete-time analog of the Wiener–Khinchin theorem), named after Herman Wold, says that every covariance-stationary time series can be written as the sum of two time series, one deterministic and one stochastic.

  7. Autocorrelation - Wikipedia

    en.wikipedia.org/wiki/Autocorrelation

    The autocorrelation of a continuous-time white noise signal will have a strong peak (represented by a Dirac delta function) at = and will be exactly for all other . Wiener–Khinchin theorem [ edit ]

  8. Detrended fluctuation analysis - Wikipedia

    en.wikipedia.org/wiki/Detrended_fluctuation_analysis

    In stochastic processes, chaos theory and time series analysis, detrended fluctuation analysis (DFA) is a method for determining the statistical self-affinity of a signal. It is useful for analysing time series that appear to be long-memory processes (diverging correlation time, e.g. power-law decaying autocorrelation function) or 1/f noise.

  9. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...