enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  4. On the Number of Primes Less Than a Given Magnitude

    en.wikipedia.org/wiki/On_the_Number_of_Primes...

    The analytic continuation of this zeta function ζ to all complex s ≠ 1; The entire function ξ(s), related to the zeta function through the gamma function (or the Π function, in Riemann's usage) The discrete function J(x) defined for x ≥ 0, which is defined by J(0) = 0 and J(x) jumps by 1/n at each prime power p n. (Riemann calls this ...

  5. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Similarly Selberg zeta functions satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. But there are also some major differences; for example, they are not given by Dirichlet series.

  6. Riemann–von Mangoldt formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–von_Mangoldt_formula

    In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function. The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies

  7. Category:Zeta and L-functions - Wikipedia

    en.wikipedia.org/wiki/Category:Zeta_and_L-functions

    Zeta functions and L-functions express important relations between the geometry of Riemann surfaces, number theory and dynamical systems.Zeta functions, and their generalizations such as the Selberg class S, are conjectured to have various important properties, including generalizations of the Riemann hypothesis and various relationships with automorphic forms as well as to the representations ...

  8. Zeta distribution - Wikipedia

    en.wikipedia.org/wiki/Zeta_distribution

    where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...

  9. Odlyzko–Schönhage algorithm - Wikipedia

    en.wikipedia.org/wiki/Odlyzko–Schönhage_algorithm

    Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height; Odlyzko, A. (1992), The 10 20-th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and discusses the results in detail.