Search results
Results from the WOW.Com Content Network
In computer science, arbitrary-precision arithmetic, ... For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was ...
Julia: the built-in BigFloat and BigInt types provide arbitrary-precision floating point and integer arithmetic respectively. newRPL: integers and floats can be of arbitrary precision (up to at least 2000 digits); maximum number of digits configurable (default 32 digits) Nim: bigints and multiple GMP bindings.
In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a signed sequence of a fixed number of digits in some base, called a significand, scaled by an integer exponent of that base. Numbers of this form are called floating-point numbers. [1]: 3 [2]: 10
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23 ) × 2 127 ≈ 3.4028235 ...
Arbitrary precision posit float valid (p) Unum type 1 (p) Unum type 2 (p) Arbitrary quire configurations with programmable capacity posit<4,0> 1 GPOPS posit<8,0> 130 MPOPS posit<16,1> 115 MPOPS posit<32,2> 105 MPOPS posit<64,3> 50 MPOPS posit<128,4> 1 MPOPS posit<256,5> 800 KPOPS Complete validation suite for arbitrary posits
Double-precision floating-point format; Quadruple-precision floating-point format; Octuple-precision floating-point format; Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format has been increasing especially in the ...
Annex "Z" introduced optional data types for supporting other fixed-width floating-point formats, as well as arbitrary-precision formats (i.e., where the precision of representation and rounding is determined at execution time) – some of this material was moved into the body of the draft by generalizing section 5. Arbitrary precision was dropped.
The GNU Multiple Precision Floating-Point Reliable Library (GNU MPFR) is a GNU portable C library for arbitrary-precision binary floating-point computation with correct rounding, based on GNU Multi-Precision Library.