enow.com Web Search

  1. Ad

    related to: newton divided difference formula questions examples free printable
  2. education.com has been visited by 100K+ users in the past month

    This site is a teacher's paradise! - The Bender Bunch

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Activities & Crafts

      Stay creative & active with indoor

      & outdoor activities for kids.

Search results

  1. Results from the WOW.Com Content Network
  2. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    Taking = for some unknown function in Newton divided difference formulas, if the representation of x in the previous sections was instead taken to be = +, in terms of forward differences, the Newton forward interpolation formula is expressed as: () = (+) = = () whereas for the same in terms of backward differences, the Newton backward ...

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to h. As h approaches zero, the slope of the secant line approaches the slope of the tangent line.

  4. Divided differences - Wikipedia

    en.wikipedia.org/wiki/Divided_differences

    In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.

  5. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points.

  6. Mean value theorem (divided differences) - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem...

    Let be the Lagrange interpolation polynomial for f at x 0, ..., x n.Then it follows from the Newton form of that the highest order term of is [, …,].. Let be the remainder of the interpolation, defined by =.

  7. Category:Finite differences - Wikipedia

    en.wikipedia.org/wiki/Category:Finite_differences

    Finite differences are composed from differences in a sequence of values, or the values of a function sampled at discrete points. Finite differences are used both in interpolation and numerical analysis, and also play an important role in combinatorics and analytic number theory. The prototypical finite difference equation is the Newton series.

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  9. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  1. Ad

    related to: newton divided difference formula questions examples free printable