Search results
Results from the WOW.Com Content Network
Droplet-based microfluidics often operate under low Reynolds numbers to ensure laminar flow within the system. [2] Droplet size is often quantified with coefficient of variation (CV) as a description of the standard deviation from the mean droplet size. Each of the listed methods provide a way to generate microfluidic droplets in a controllable ...
Droplet-based microfluidics is a subcategory of microfluidics in contrast with continuous microfluidics; droplet-based microfluidics manipulates discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades.
Digital microfluidics (DMF) is a platform for lab-on-a-chip systems that is based upon the manipulation of microdroplets. Droplets are dispensed, moved, stored, mixed, reacted, or analyzed on a platform with a set of insulated electrodes.
Droplet Digital PCR (ddPCR) is a method of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into ~20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all ...
Illustration of the effect of varying the Stokes number. Orange and green trajectories are for small and large Stokes numbers, respectively. Orange curve is trajectory of particle with Stokes number less than one that follows the streamlines (blue), while green curve is for a Stokes number greater than one, and so the particle does not follow the streamlines.
where R is the radius of the droplet, ¯ is the mean radius, and is the standard deviation. Determining which phase is the continuous phase and which phase is the dispersed phase is done by using the Bancroft Rule when the two phases have similar mole fractions.
A science fair or engineering fair is an event hosted by a school that offers students the opportunity to experience the practices of science and engineering for themselves. In the United States, the Next Generation Science Standards makes experiencing the practices of science and engineering one of the three pillars of science education.
[50] [51] [52] Taylor’s work contributed to electrospinning by mathematically modeling the shape of the cone formed by the fluid droplet under the effect of an electric field; this characteristic droplet shape is now known as the Taylor cone. He further worked with J. R. Melcher to develop the "leaky dielectric model" for conducting fluids.