Search results
Results from the WOW.Com Content Network
A nonzero constant P for which this is the case is called a period of the function. If there exists a least positive [2] constant P with this property, it is called the fundamental period (also primitive period, basic period, or prime period.) Often, "the" period of a function is used to mean its fundamental period.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
Sine and cosecant begin their period at (where is an integer), finish it at +, and then reverse themselves over + to +. Cosine and secant begin their period at 2 π k , {\displaystyle 2\pi k,} finish it at 2 π k + π . {\displaystyle 2\pi k+\pi .} and then reverse themselves over 2 π k + π {\displaystyle 2\pi k+\pi } to 2 π k + 2 π ...
The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum, and also to a slight degree on its weight distribution (the moment of inertia about its own center of mass) and the amplitude (width) of the pendulum's swing.
Plot of normalized function (i.e. ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] = = (), using ordinary frequency f, where is the normalized form [10] of the sinc function and = (/) / = (/), using angular frequency , where is the unnormalized form of the sinc function.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
The real period is, of course, the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period: [16] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of the ...