Search results
Results from the WOW.Com Content Network
To derive the formula for the one-sample proportion in the Z-interval, a sampling distribution of sample proportions needs to be taken into consideration. The mean of the sampling distribution of sample proportions is usually denoted as μ p ^ = P {\displaystyle \mu _{\hat {p}}=P} and its standard deviation is denoted as: [ 2 ]
The z-test for comparing two proportions is a statistical method used to evaluate whether the proportion of a certain characteristic differs significantly between two independent samples. This test leverages the property that the sample proportions (which is the average of observations coming from a Bernoulli distribution ) are asymptotically ...
It is usually determined on the basis of the cost, time or convenience of data collection and the need for sufficient statistical power. For example, if a proportion is being estimated, one may wish to have the 95% confidence interval be less than 0.06 units wide. Alternatively, sample size may be assessed based on the power of a hypothesis ...
(z is the distance from the mean in relation to the standard deviation of the mean). For non-normal distributions it is possible to calculate a minimum proportion of a population that falls within k standard deviations for any k (see: Chebyshev's inequality). Two-sample z-test
This fact is the basis of a hypothesis test, a "proportion z-test", for the value of p using x/n, the sample proportion and estimator of p, in a common test statistic. [35] For example, suppose one randomly samples n people out of a large population and ask them whether they agree with a certain statement. The proportion of people who agree ...
A tolerance interval (TI) is a statistical interval within which, with some confidence level, a specified sampled proportion of a population falls. "More specifically, a 100×p%/100×(1−α) tolerance interval provides limits within which at least a certain proportion (p) of the population falls with a given level of confidence (1−α)."
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
Region of rejection / Critical region: The set of values of the test statistic for which the null hypothesis is rejected. Power of a test (1 − β) Size: For simple hypotheses, this is the test's probability of incorrectly rejecting the null hypothesis. The false positive rate. For composite hypotheses this is the supremum of the probability ...