enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.

  3. File:Inductive proofs of properties of add, mult from ...

    en.wikipedia.org/wiki/File:Inductive_proofs_of...

    English: Shows recursive definitions of addition (+) and multiplication (*) on natural numbers and inductive proofs of commutativity, associativity, distributivity by Peano induction; also indicates which property is used in the proof of which other one.

  4. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges

  5. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...

  6. Rearrangement inequality - Wikipedia

    en.wikipedia.org/wiki/Rearrangement_inequality

    Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality. As a simple example, consider real numbers : By applying with := for all =, …,, it follows that + + + + + + for every permutation of , …,.

  7. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    A proof is given by induction.The base case with n = 1 is trivial, since it is equivalent to () =! () = ().. Now, suppose this is true for n, and let us prove it for n + 1. . Firstly, using the Leibniz integral rule, note that [! ()] = ()! ().

  8. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    See angle sum and difference identities. We deduce that S(k) implies S(k + 1). By the principle of mathematical induction it follows that the result is true for all natural numbers. Now, S(0) is clearly true since cos(0x) + i sin(0x) = 1 + 0i = 1. Finally, for the negative integer cases, we consider an exponent of −n for natural n.

  9. Transfinite induction - Wikipedia

    en.wikipedia.org/wiki/Transfinite_induction

    Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.