Search results
Results from the WOW.Com Content Network
Below is the full 8086/8088 instruction set of Intel (81 instructions total). [2] These instructions are also available in 32-bit mode, in which they operate on 32-bit registers (eax, ebx, etc.) and values instead of their 16-bit (ax, bx, etc.) counterparts.
With the release of the 386, protected mode offers what the Intel manuals call virtual 8086 mode. Virtual 8086 mode is designed to allow code previously written for the 8086 to run unmodified and concurrently with other tasks, without compromising security or system stability. [34] Virtual 8086 mode, however, is not completely backward ...
Real Address mode, [37] commonly called Real mode, is an operating mode of 8086 and later x86-compatible CPUs. Real mode is characterized by a 20-bit segmented memory address space (meaning that only slightly more than 1 MiB of memory can be addressed [ p ] ), direct software access to peripheral hardware, and no concept of memory protection or ...
An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere. In computer programming, addressing modes are primarily of interest to those who write in assembly languages and to compiler writers.
In protected mode a segment cannot be both writable and executable. [ 2 ] [ 3 ] Therefore, when implementing the Tiny memory model the code segment register must point to the same physical address and have the same limit as the data segment register.
The 8086 [3] (also called iAPX 86) [4] is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, [5] is a slightly modified chip with an external 8-bit data bus (allowing the use of cheaper and fewer supporting ICs), [note 1] and is notable as the processor used in the original IBM PC design.
To support old software, the processor starts up in "real mode", a mode in which it uses the segmented addressing model of the 8086. There is a small difference though: the resulting physical address is no longer truncated to 20 bits, so real mode pointers (but not 8086 pointers) can now refer to addresses between 100000 16 and 10FFEF 16.
In contrast to the PDP-11's 3-bit fields, the VAX-11's 4-bit sub-bytes resulted in 16 addressing modes (0–15). However, addressing modes 0–3 were "short immediate" for immediate data of 6 bits or less (the 2 low-order bits of the addressing mode being the 2 high-order bits of the immediate data, when prepended to the remaining 4 bits in ...