enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.

  3. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Similarly to viscosity, Revised Enskog Theory yields an expression for thermal conductivity that reduces to the above expression in the limit of infinite dilution, and which can be written as = + where is a term that tends to unity in the limit of infinite dilution, accounting for excluded volume, and is a term accounting for the transfer of ...

  4. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    For finite , corresponding to softer repulsion, is greater than /, which results in faster increase of viscosity compared with the hard-sphere model. Fitting to experimental data for hydrogen and helium gives predictions for and shown in the table. The model is modestly accurate for these two gases, but inaccurate for other gases.

  5. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.

  6. Schmidt number - Wikipedia

    en.wikipedia.org/wiki/Schmidt_number

    The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).

  7. Helium - Wikipedia

    en.wikipedia.org/wiki/Helium

    Helium-4 is an unusually stable nucleus because its nucleons are arranged into complete shells. It was also formed in enormous quantities during Big Bang nucleosynthesis. [113] Helium-3 is present on Earth only in trace amounts. Most of it has been present since Earth's formation, though some falls to Earth trapped in cosmic dust. [114]

  8. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    Fluid dynamicists define the chord Reynolds number R = Vc/ν, where V is the flight speed, c is the chord length, and ν is the kinematic viscosity of the fluid in which the airfoil operates, which is 1.460 × 10 −5 m 2 /s for the atmosphere at sea level. [19]

  9. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.