Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
However, some of the early successes of molecular engineering have come in the fields of immunotherapy, synthetic biology, and printable electronics (see molecular engineering applications). Molecular engineering is a dynamic and evolving field with complex target problems; breakthroughs require sophisticated and creative engineers who are ...
The theory was extended to map chemical space with molecular assembly trees, demonstrating the application of this approach in drug discovery, [2] in particular in research of new opiate-like molecules by connecting the "assembly pool elements through the same pattern in which they were disconnected from their parent compound(s)".
Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. [1] The methods are used in the fields of computational chemistry, drug design, computational biology and materials science to study molecular systems ranging from small chemical systems to large biological molecules and material assemblies.
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.
Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of molecular building blocks to fabricate electronic components.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
MO theory recognizes that some electrons in the graphite atomic sheets are completely delocalized over arbitrary distances, and reside in very large molecular orbitals that cover an entire graphite sheet, and some electrons are thus as free to move and therefore conduct electricity in the sheet plane, as if they resided in a metal.