Search results
Results from the WOW.Com Content Network
An IPv4 subnet mask consists of 32 bits; it is a sequence of ones (1) followed by a block of zeros (0). The ones indicate bits in the address used for the network prefix and the trailing block of zeros designates that part as being the host identifier.
A subnet mask is a bitmask that encodes the prefix length associated with an IPv4 address or network in quad-dotted notation: 32 bits, starting with a number of 1-bits equal to the prefix length, ending with 0-bits, and encoded in four-part dotted-decimal format: 255.255.255.0. A subnet mask encodes the same information as a prefix length but ...
The term subnet mask is only used within IPv4. Both IP versions however use the CIDR concept and notation. In this, the IP address is followed by a slash and the number (in decimal) of bits used for the network part, also called the routing prefix. For example, an IPv4 address and its subnet mask may be 192.0.2.1 and 255.255.255.0, respectively.
The original list of IPv4 address blocks was published in September 1981. [3] In previous versions of the document, [19] [20] network numbers were 8-bit numbers rather than the 32-bit numbers used in IPv4. At that time, three networks were added that were not listed earlier: 42.rrr.rrr.rrr, 43.rrr.rrr.rrr, and 44.rrr.rrr.rrr.
In the original address definition, the most significant eight bits of the 32-bit IPv4 address was the network number field which specified the particular network a host was attached to. The remaining 24 bits specified the local address, also called rest field (the rest of the address), which uniquely identified a host connected to that network ...
The IPv4 header is variable in size due to the optional 14th field (Options). The IHL field contains the size of the IPv4 header; it has 4 bits that specify the number of 32-bit words in the header. The minimum value for this field is 5, [33] which indicates a length of 5 × 32 bits = 160 bits = 20 bytes. As a 4-bit field, the maximum value is ...
Open Shortest Path First (OSPF) is encapsulated in IP, but runs only on the IPv4 subnet, while the IPv6 version runs on the link using only link-local addressing. IGRP, and EIGRP are directly encapsulated in IP. EIGRP uses its own reliable transmission mechanism, while IGRP assumed an unreliable transport.
As shown in the example below, in order to calculate the directed broadcast address to transmit a packet to an entire IPv4 subnet using the private IP address space 172.16.0.0 / 12, which has the subnet mask 255.240.0.0, the broadcast address is calculated as 172.16.0.0 bitwise ORed with 0.15.255.255 = 172.31.255.255. Directed broadcasts always ...