enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct stiffness method - Wikipedia

    en.wikipedia.org/wiki/Direct_stiffness_method

    Each element is then analyzed individually to develop member stiffness equations. The forces and displacements are related through the element stiffness matrix which depends on the geometry and properties of the element. A truss element can only transmit forces in compression or tension. This means that in two dimensions, each node has two ...

  3. Stiffness matrix - Wikipedia

    en.wikipedia.org/wiki/Stiffness_matrix

    The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse. For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.

  4. Applied element method - Wikipedia

    en.wikipedia.org/wiki/Applied_element_method

    The stiffness matrix components corresponding to each degree of freedom are determined by assuming a unit displacement in the studied direction and by determining forces at the centroid of each element. The 2D element stiffness matrix size is 6 × 6; the components of the upper left quarter of the stiffness matrix are shown below:

  5. Finite element method in structural mechanics - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method_in...

    This type of element is suitable for modeling cables, braces, trusses, beams, stiffeners, grids and frames. Straight elements usually have two nodes, one at each end, while curved elements will need at least three nodes including the end-nodes. The elements are positioned at the centroidal axis of the actual members.

  6. Extended finite element method - Wikipedia

    en.wikipedia.org/wiki/Extended_finite_element_method

    The finite element method has been the tool of choice since civil engineer Ray W. Clough in 1940 derived the stiffness matrix of a 3-node triangular finite element (and coined the name). The precursors of FEM were elements built-up from bars (Hrennikoff, Argyris, Turner) and a conceptual variation approach suggested by R. Courant.

  7. Structural analysis - Wikipedia

    en.wikipedia.org/wiki/Structural_analysis

    Early applications of matrix methods were applied to articulated frameworks with truss, beam and column elements; later and more advanced matrix methods, referred to as "finite element analysis", model an entire structure with one-, two-, and three-dimensional elements and can be used for articulated systems together with continuous systems ...

  8. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  9. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Otherwise methods such as virtual work, direct integration, Castigliano's method, Macaulay's method or the direct stiffness method are used. The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory.