enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximal information coefficient - Wikipedia

    en.wikipedia.org/.../Maximal_information_coefficient

    The maximal information coefficient uses binning as a means to apply mutual information on continuous random variables. Binning has been used for some time as a way of applying mutual information to continuous distributions; what MIC contributes in addition is a methodology for selecting the number of bins and picking a maximum over many possible grids.

  3. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...

  4. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  5. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  6. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  7. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model , the observed data is most probable.

  8. 50 Proud Owners Share Their Dog’s Wholesome Transformation ...

    www.aol.com/127-wholesome-photos-doggos-growing...

    Image credits: forever_cat_lady However, if people manage to look after their dog, they can also start teaching their kids about the benefits of having a pet. Writing in the journal Nature ...

  9. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques.