Search results
Results from the WOW.Com Content Network
Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
A P–P plot plots two cumulative distribution functions (cdfs) against each other: [1] given two probability distributions, with cdfs "F" and "G", it plots ((), ()) as z ranges from to . As a cdf has range [0,1], the domain of this parametric graph is ( − ∞ , ∞ ) {\displaystyle (-\infty ,\infty )} and the range is the unit square [ 0 , 1 ...
Probability plot, a graphical technique for comparing two data sets, may refer to: P–P plot, "Probability-Probability" or "Percent-Percent" plot;
In probability theory, the probability generating function of a discrete random variable is a power series representation (the generating function) ...
The PPCC plot is formed by: Vertical axis: Probability plot correlation coefficient; Horizontal axis: Value of shape parameter. That is, for a series of values of the shape parameter, the correlation coefficient is computed for the probability plot associated with a given value of the shape parameter. These correlation coefficients are plotted ...
The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.