enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  3. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    Matrix multiplication involves the action of multiplying each row vector of one matrix by each column vector of another matrix. The dot product of two column vectors a, b, considered as elements of a coordinate space, is equal to the matrix product of the transpose of a with b,

  4. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  5. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product is equivalent to a matrix multiplication, provided that is represented as a column vector and as a column vector (which makes a row vector). [ 2 ] [ 3 ] For instance, if m = 4 {\displaystyle m=4} and n = 3 , {\displaystyle n=3,} then [ 4 ]

  6. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm.

  7. Cracovian - Wikipedia

    en.wikipedia.org/wiki/Cracovian

    The Cracovian product of two matrices, say A and B, is defined by A ∧ B = B T A, where B T and A are assumed compatible for the common type of matrix multiplication. Since (AB) T = B T A T, the products (A ∧ B) ∧ C and A ∧ (B ∧ C) will generally be different; thus, Cracovian multiplication is non-associative.

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Interchanging two rows or two columns affects the determinant by multiplying it by −1. [36] Using these operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices, the determinant equals the product of the entries on the main diagonal; this provides a method to calculate the determinant of any matrix.

  9. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    5 is halved (2.5) and 6 is doubled (12). The fractional portion is discarded (2.5 becomes 2). The figure in the left column (2) is even, so the figure in the right column (12) is discarded. 2 is halved (1) and 12 is doubled (24). All not-scratched-out values are summed: 3 + 6 + 24 = 33. The method works because multiplication is distributive, so: