Search results
Results from the WOW.Com Content Network
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.
This is called an unbiased estimator. The estimator will become a best unbiased estimator if it has minimum variance. However, a biased estimator with a small variance may be more useful than an unbiased estimator with a large variance. [1] Most importantly, we prefer point estimators that have the smallest mean square errors.
Under these conditions, the method of OLS provides minimum-variance mean-unbiased estimation when the errors have finite variances. Under the additional assumption that the errors are normally distributed with zero mean, OLS is the maximum likelihood estimator that outperforms any non-linear unbiased estimator.
Additionally, unbiased estimators with smaller variances are preferred over larger variances because it will be closer to the "true" value of the parameter. The unbiased estimator with the smallest variance is known as the minimum-variance unbiased estimator (MVUE).
There are methods of construction median-unbiased estimators for probability distributions that have monotone likelihood-functions, such as one-parameter exponential families, to ensure that they are optimal (in a sense analogous to minimum-variance property considered for mean-unbiased estimators).
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
For example, a single observation is itself an unbiased estimate of the mean and a pair of observations can be used to derive an unbiased estimate of the variance. The U-statistic based on this estimator is defined as the average (across all combinatorial selections of the given size from the full set of observations) of the basic estimator ...
Efficient estimators are always minimum variance unbiased estimators. However the converse is false: There exist point-estimation problems for which the minimum-variance mean-unbiased estimator is inefficient. [6] Historically, finite-sample efficiency was an early optimality criterion. However this criterion has some limitations: