Search results
Results from the WOW.Com Content Network
Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...
Facial recognition systems have been deployed in advanced human–computer interaction, video surveillance, law enforcement, passenger screening, decisions on employment and housing and automatic indexing of images. [4] [5] Facial recognition systems are employed throughout the world today by governments and private companies. [6]
Face detection is a binary classification problem combined with a localization problem: given a picture, decide whether it contains faces, and construct bounding boxes for the faces. To make the task more manageable, the Viola–Jones algorithm only detects full view (no occlusion), frontal (no head-turning), upright (no rotation), well-lit ...
The Face Recognition Vendor Test (FRVT) was a series of large scale independent evaluations for face recognition systems realized by the National Institute of Standards and Technology in 2000, 2002, 2006, 2010, 2013 and 2017. Previous evaluations in the series were the Face Recognition Technology (FERET) evaluations in
The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1] The system uses a deep convolutional neural network to learn a mapping (also called an embedding) from a set of face images to a 128-dimensional Euclidean space, and assesses the similarity between faces based on the square of the ...
The Facial Recognition Technology (FERET) database is a dataset used for facial recognition system evaluation as part of the Face Recognition Technology (FERET) program.It was first established in 1993 under a collaborative effort between Harry Wechsler at George Mason University and Jonathon Phillips at the Army Research Laboratory in Adelphi, Maryland.
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1] Well-researched domains of object detection include face detection and pedestrian detection.
Examples include the detection of an obstacle in the car's field of view and possible abnormal cells or tissues in medical images or the detection of a vehicle in an automatic road toll system. Detection based on relatively simple and fast computations is sometimes used for finding smaller regions of interesting image data which can be further ...