Search results
Results from the WOW.Com Content Network
While naive Bayes often fails to produce a good estimate for the correct class probabilities, [16] this may not be a requirement for many applications. For example, the naive Bayes classifier will make the correct MAP decision rule classification so long as the correct class is predicted as more probable than any other class. This is true ...
"On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes" (PDF). Advances in Neural Information Processing Systems. Jebara, Tony (2004). Machine Learning: Discriminative and Generative. The Springer International Series in Engineering and Computer Science. Kluwer Academic (Springer). ISBN 978-1-4020-7647-3.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The simplest one is Naive Bayes classifier. [2] Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different.
In the repeated experiments, logistic regression and naive Bayes are applied here for different models on binary classification task, discriminative learning results in lower asymptotic errors, while generative one results in higher asymptotic errors faster. [3]
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.
Classic machine learning models like hidden Markov models, neural networks and newer models such as variable-order Markov models can be considered special cases of Bayesian networks. One of the simplest Bayesian Networks is the Naive Bayes classifier .