Search results
Results from the WOW.Com Content Network
[4]: 114 A DataFrame is a 2-dimensional data structure of rows and columns, similar to a spreadsheet, and analogous to a Python dictionary mapping column names (keys) to Series (values), with each Series sharing an index. [4]: 115 DataFrames can be concatenated together or "merged" on columns or indices in a manner similar to joins in SQL.
Dataframe may refer to: A tabular data structure common to many data processing libraries: pandas (software) § DataFrames; The Dataframe API in Apache Spark; Data frames in the R programming language; Frame (networking)
doc2vec, generates distributed representations of variable-length pieces of texts, such as sentences, paragraphs, or entire documents. [14] [15] doc2vec has been implemented in the C, Python and Java/Scala tools (see below), with the Java and Python versions also supporting inference of document embeddings on new, unseen documents.
Various plots of the multivariate data set Iris flower data set introduced by Ronald Fisher (1936). [1]A data set (or dataset) is a collection of data.In the case of tabular data, a data set corresponds to one or more database tables, where every column of a table represents a particular variable, and each row corresponds to a given record of the data set in question.
The terms data dictionary and data repository indicate a more general software utility than a catalogue. A catalogue is closely coupled with the DBMS software. It provides the information stored in it to the user and the DBA, but it is mainly accessed by the various software modules of the DBMS itself, such as DDL and DML compilers, the query optimiser, the transaction processor, report ...
NLTK (Natural Language Toolkit): A suite of libraries and programs for symbolic and statistical natural language processing (NLP) for the Python language. OpenNN: Open neural networks library. Orange: A component-based data mining and machine learning software suite written in the Python language.
which shows which documents contain which terms and how many times they appear. Note that, unlike representing a document as just a token-count list, the document-term matrix includes all terms in the corpus (i.e. the corpus vocabulary), which is why there are zero-counts for terms in the corpus which do not also occur in a specific document.
Sparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims to find a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms, and they compose a dictionary.