Search results
Results from the WOW.Com Content Network
There is a band of siliceous ooze that is the result of enhanced equatorial upwelling in Pacific Ocean sediments below the North Equatorial Current. In the subpolar North Pacific, upwelling occurs along the eastern and western sides of the basin from the Alaska current and the Oyashio Current. Siliceous ooze is present along the seafloor in ...
The Equatorial Pacific is an oceanic province characterized by nearly year-round upwelling due to the convergence of trade winds from the northeast and southeast at the Intertropical Convergence Zone. The Equatorial Pacific spans nearly half of Earth’s circumference and plays a major role in global marine new primary production. [25]
Upwelling intensity depends on wind strength and seasonal variability, as well as the vertical structure of the water, variations in the bottom bathymetry, and instabilities in the currents. In some areas, upwelling is a seasonal event leading to periodic bursts of productivity similar to spring blooms in coastal waters. Wind-induced upwelling ...
They carry warm water from the tropics poleward. Examples include the Gulf Stream, the Agulhas Current, and the Kuroshio Current. Low-latitude western boundary currents are similar to sub-tropical western boundary currents but carry cool water from the subtropics equatorward. Examples include the Mindanao Current and the North Brazil Current.
Upwelling occurs near the Galapagos Islands. This brings food supplies to the surface for Galápagos penguin. Upwelling, however, is a sporadic phenomenon; it fails to occur on a regular basis, and so the food supply comes and goes. The penguins have several adaptations to cope with this, including versatility in their breeding habits.
Wind-driven upwelling brings nutrients from deep waters to the surface which leads to biological productivity. Therefore, wind stress impacts biological activity around the globe. Two important forms of wind-driven upwelling are coastal upwelling and equatorial upwelling.
The replacing upwelling water will be colder than the surrounding surface waters, again creating a strong vertical gradient in temperature that leads to the formation of a front. [2] As the location of the trade winds varies seasonally, the location of the equatorial upwelling front does so as well. [25]
A subsurface ocean current is an oceanic current that runs beneath surface currents. [1] Examples include the Equatorial Undercurrents of the Pacific, Atlantic, and Indian Oceans, the California Undercurrent, [2] and the Agulhas Undercurrent, [3] the deep thermohaline circulation in the Atlantic, and bottom gravity currents near Antarctica.