Search results
Results from the WOW.Com Content Network
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.
The prolate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis connecting the foci, whereas the oblate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis separating the foci.
In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F 1 and F 2, known as foci, at distance 2c from each other as the locus of points P so that PF 1 ·PF 2 = c 2. The curve has a shape similar to the numeral 8 and to the ∞ symbol.
The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.
Determining the distance of closest approach of the ellipses; that is the distance between the centers of the ellipses when they are in point contact externally. Rotating the plane until the distance of closest approach of the ellipses is a maximum. The distance of closest approach of the ellipsoids is this maximum distance.
The point on the horizontal line going out to the right from the focal point is the point with = for which the distance to the focus takes the minimal value +, the pericentre. For the ellipse there is also an apocentre for which the distance to the focus takes the maximal value p 1 − e . {\displaystyle {\tfrac {p}{1-e}}.}