Search results
Results from the WOW.Com Content Network
The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint. These two constraints are hard constraints, meaning that it is required that they be satisfied; they define the feasible set of candidate solutions.
If the objective function and all of the hard constraints are linear and some hard constraints are inequalities, then the problem is a linear programming problem. This can be solved by the simplex method , which usually works in polynomial time in the problem size but is not guaranteed to, or by interior point methods which are guaranteed to ...
Then the fundamental theorem of linear inequalities implies (for feasible problems) that for every vertex x * of the LP feasible region, there exists a set of d (or fewer) inequality constraints from the LP such that, when we treat those d constraints as equalities, the unique solution is x *. Thereby we can study these vertices by means of ...
Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function whose optimal point is a global maximum or minimum over the ...
is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices . This linear matrix inequality specifies a convex constraint on y {\displaystyle y} .
In an optimization problem, a slack variable is a variable that is added to an inequality constraint to transform it into an equality constraint. A non-negativity constraint on the slack variable is also added. [1]: 131 Slack variables are used in particular in linear programming.
Geometric programming is a technique whereby objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program. Integer programming studies linear programs in which some or all variables are constrained to take on integer values. This is not convex, and in general much ...
The active constraints are then expressed as equality constraints, thereby transforming an inequality-constrained problem into a simpler equality-constrained subproblem. An optimization problem is defined using an objective function to minimize or maximize, and a set of constraints