Search results
Results from the WOW.Com Content Network
The channels are formed by concentric layers called lamellae, which are approximately 50 μm in diameter. The Haversian canals surround blood vessels and nerve cells throughout bones and communicate with osteocytes (contained in spaces within the dense bone matrix called lacunae) through connections called canaliculi.
Each osteon consists of concentric layers, or lamellae, of compact bone tissue that surround a central canal, the Haversian canal. The Haversian canal contains the bone's blood supplies. The boundary of an osteon is the cement line. Each Haversian canal is surrounded by varying number (5-20) of concentrically arranged lamellae of bone matrix.
Volkmann's canals, also known as perforating holes or channels, are anatomic arrangements in cortical bones that allow blood vessels to enter the bones from periosteum. They interconnect the Haversian canals (running inside osteons ) with each other and the periosteum.
This constitutes the so-called capsule of the space. Each lacuna is generally occupied by a single cell, but during the division of the cells, it may contain two, four, or eight cells. Lacunae are found between narrow sheets of calcified matrix that are known as lamellae (/ l ə ˈ m ɛ l i / lə-MEL-ee).
Armand de Ricqlès discovered Haversian canals in dinosaur bones, and argued that there was evidence of endothermy in dinosaurs. These canals are common in "warm-blooded" animals and are associated with fast growth and an active life style because they help to recycle bone to facilitate rapid growth and repair damage caused by stress or ...
The heart muscle may become inflamed in a condition called myocarditis, [46] most commonly caused by a viral infection [47] but sometimes caused by the body's own immune system. [48] Heart muscle can also be damaged by drugs such as alcohol, long standing high blood pressure or hypertension, or persistent abnormal heart racing. [49]
Bone canaliculi are microscopic canals between the lacunae of ossified bone. The radiating processes of the osteocytes (called filopodia) project into these canals. These cytoplasmic processes are joined together by gap junctions. Osteocytes do not entirely fill up the canaliculi.
The heart's cardiac skeleton comprises four dense connective tissue rings that encircle the mitral and tricuspid atrioventricular (AV) canals and extend to the origins of the pulmonary trunk and aorta. This provides crucial support and structure to the heart while also serving to electrically isolate the atria from the ventricles. [1]