enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    Doppler broadening of 238 U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control. Around 99.284% of natural uranium's mass is uranium-238, which has a half-life of 1.41 × 10 17 seconds (4.468 × 10 9 years, or 4.468 billion years). [1]

  3. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...

  4. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    Uranium-235 has a half-life of about 7.04 × 10 8 years; it is the next most stable uranium isotope after 238 U and is also predominantly an alpha emitter, decaying to thorium-231. [7] Uranium-235 is important for both nuclear reactors and nuclear weapons , because it is the only uranium isotope existing in nature on Earth in significant ...

  5. Depleted uranium - Wikipedia

    en.wikipedia.org/wiki/Depleted_uranium

    It is only weakly radioactive because of the long radioactive half-life of 238 U (4.468 × 10 9 or 4,468,000,000 years) and the low amounts of 234 U (half-life about 246,000 years) and 235 U (half-life 700 million years). The biological half-life (the average time it takes for the human body to eliminate half the amount in the body) for uranium ...

  6. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]

  7. Weapons-grade nuclear material - Wikipedia

    en.wikipedia.org/wiki/Weapons-grade_nuclear_material

    Pu-239 is produced artificially in nuclear reactors when a neutron is absorbed by U-238, forming U-239, which then decays in a rapid two-step process into Pu-239. [22] It can then be separated from the uranium in a nuclear reprocessing plant. [23] Weapons-grade plutonium is defined as being predominantly Pu-239, typically about 93% Pu-239. [24]

  8. Natural uranium - Wikipedia

    en.wikipedia.org/wiki/Natural_uranium

    On rare occasions, earlier in geologic history when uranium-235 was more abundant, uranium ore was found to have naturally engaged in fission, forming natural nuclear fission reactors. Uranium-235 decays at a faster rate (half-life of 700 million years) compared to uranium-238, which decays extremely slowly (half-life of 4.5 billion years ...

  9. Uranium–uranium dating - Wikipedia

    en.wikipedia.org/wiki/Uraniumuranium_dating

    238 U, with a half-life of about 4.5 billion years, decays to 234 U through emission of an alpha particle to thorium-234 (234 Th), which is comparatively unstable with a half-life of just 24 days. 234 Th then decays through beta particle emission to protactinium-234 (234 Pa).