enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skew lines - Wikipedia

    en.wikipedia.org/wiki/Skew_lines

    The line through segment AD and the line through segment B 1 B are skew lines because they are not in the same plane. In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron.

  3. Skew - Wikipedia

    en.wikipedia.org/wiki/Skew

    Skew lines, neither parallel nor intersecting. Skew normal distribution, a probability distribution; Skew field or division ring; Skew-Hermitian matrix; Skew lattice; Skew polygon, whose vertices do not lie on a plane; Infinite skew polyhedron; Skew-symmetric graph; Skew-symmetric matrix; Skew tableau, a generalization of Young tableaux

  4. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The geometric interpretation of curl as rotation corresponds to identifying bivectors (2-vectors) in 3 dimensions with the special orthogonal Lie algebra of infinitesimal rotations (in coordinates, skew-symmetric 3 × 3 matrices), while representing rotations by vectors corresponds to identifying 1-vectors (equivalently, 2-vectors) and ...

  5. Division ring - Wikipedia

    en.wikipedia.org/wiki/Division_ring

    In algebra, a division ring, also called a skew field (or, occasionally, a sfield [1] [2]), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring [3] in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a –1, such that a a –1 = a –1 a = 1.

  6. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    Definition of a ruled surface: every point lies on a line. In geometry, a surface S in 3-dimensional Euclidean space is ruled (also called a scroll) if through every point of S, there is a straight line that lies on S.

  7. Developable surface - Wikipedia

    en.wikipedia.org/wiki/Developable_surface

    The cylinder is an example of a developable surface. In mathematics, a developable surface (or torse: archaic) is a smooth surface with zero Gaussian curvature. That is, it is a surface that can be flattened onto a plane without distortion (i.e. it can be bent without stretching or compression).

  8. Symmetrization - Wikipedia

    en.wikipedia.org/wiki/Symmetrization

    The symmetrization and antisymmetrization of a bilinear map are bilinear; thus away from 2, every bilinear form is a sum of a symmetric form and a skew-symmetric form, and there is no difference between a symmetric form and a quadratic form. At 2, not every form can be decomposed into a symmetric form and a skew-symmetric form.

  9. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    The bare term cylinder often refers to a solid cylinder with circular ends perpendicular to the axis, that is, a right circular cylinder, as shown in the figure. The cylindrical surface without the ends is called an open cylinder. The formulae for the surface area and the volume of a right circular cylinder have been known from early antiquity.