enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 11 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .

  5. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    The polar circumference equals C p =4m p, four times the quarter meridian m p =aE(e), where the polar radius b enters via the eccentricity, e=(1−b 2 /a 2) 0.5; see Ellipse#Circumference for details. Arc length of more general surface curves, such as meridian arcs and geodesics, can also be derived from Earth's equatorial and polar radii.

  6. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the

  7. Roundness - Wikipedia

    en.wikipedia.org/wiki/Roundness

    A smooth ellipse can have low roundness, if its eccentricity is large. Regular polygons increase their roundness with increasing numbers of sides, even though they are still sharp-edged. In geology and the study of sediments (where three-dimensional particles are most important), roundness is considered to be the measurement of surface ...

  8. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    Eccentricity measures the departure of this ellipse from circularity. The shape of the Earth's orbit varies between nearly circular (theoretically the eccentricity can hit zero) and mildly elliptical (highest eccentricity was 0.0679 in the last 250 million years). [ 6 ]

  9. Mean anomaly - Wikipedia

    en.wikipedia.org/wiki/Mean_anomaly

    where M 0 is the mean anomaly at the epoch t 0, which may or may not coincide with τ, the time of pericenter passage. The classical method of finding the position of an object in an elliptical orbit from a set of orbital elements is to calculate the mean anomaly by this equation, and then to solve Kepler's equation for the eccentric anomaly.