Search results
Results from the WOW.Com Content Network
For rocket-like propulsion systems, this is a function of mass fraction and exhaust velocity; mass fraction for rocket-like systems is usually limited by propulsion system weight and tankage weight. [ citation needed ] For a system to achieve this limit, the payload may need to be a negligible percentage of the vehicle, and so the practical ...
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The rocket is launched using liquid hydrogen and liquid oxygen cryogenic propellants. Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.
Principles of Guided Missile Design is a textbook and reference book written by E. Arthur Bonney, Maurice J. Zucrow, and Carl W. Besserer in 1956. The book is a glossary of rocket and space flight terms, an introduction to rocket design, parametric studies and student instruction. The book is written in English and was published by Van Nostrand ...
Ernst Stuhlinger (December 19, 1913 – May 25, 2008) was a German-American atomic, electrical, and rocket scientist. After being brought to the United States as part of Operation Paperclip, he developed guidance systems with Wernher von Braun's team for the US Army, and later was a scientist with NASA.
RS-68 being tested at NASA's Stennis Space Center Viking 5C rocket engine used on Ariane 1 through Ariane 4. A rocket engine is a reaction engine, producing thrust in accordance with Newton's third law by ejecting reaction mass rearward, usually a high-speed jet of high-temperature gas produced by the combustion of rocket propellants stored inside the rocket.
Once in orbit, a spacecraft may fire rocket engines to make in-plane changes to a different altitude or type of orbit, or to change its orbital plane. These maneuvers require changes in the craft's velocity, and the classical rocket equation is used to calculate the propellant requirements for a given delta-v .
A photon rocket is a rocket that uses thrust from the momentum of emitted photons (radiation pressure by emission) for its propulsion. [1] Photon rockets have been discussed as a propulsion system that could make interstellar flight possible during a human lifetime, which requires the ability to propel spacecraft to speeds at least 10% of the speed of light, v ≈ 0.1c = 30,000 km/s. [2]