enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The real numbers can be constructed as a completion of the rational numbers, in such a way that a sequence defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415; ...) converges to a unique real number—in this case π. For details and other constructions of real numbers, see Construction of the real numbers.

  3. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  4. Decidability of first-order theories of the real numbers

    en.wikipedia.org/wiki/Decidability_of_first...

    The theory of real closed fields is the theory in which the primitive operations are multiplication and addition; this implies that, in this theory, the only numbers that can be defined are the real algebraic numbers. As proven by Tarski, this theory is decidable; see Tarski–Seidenberg theorem and Quantifier elimination.

  5. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    An example of the second case is the decidability of the first-order theory of the real numbers, a problem of pure mathematics that was proved true by Alfred Tarski, with an algorithm that is impossible to implement because of a computational complexity that is much too high. [122]

  6. Class number problem - Wikipedia

    en.wikipedia.org/wiki/Class_number_problem

    That is because what enters the analytic formula for the class number is not h, the class number, on its own — but h log ε, where ε is a fundamental unit. This extra factor is hard to control. It may well be the case that class number 1 for real quadratic fields occurs infinitely often.

  7. Ideal class group - Wikipedia

    en.wikipedia.org/wiki/Ideal_class_group

    The number of ideal classes (the class number of R) may be infinite in general. In fact, every abelian group is isomorphic to the ideal class group of some Dedekind domain. [1] But if R is a ring of algebraic integers, then the class number is always finite. This is one of the main results of classical algebraic number theory.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Universe (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Universe_(mathematics)

    If the object of study is formed by the real numbers, then the real line R, which is the real number set, could be the universe under consideration. Implicitly, this is the universe that Georg Cantor was using when he first developed modern naive set theory and cardinality in the 1870s and 1880s in applications to real analysis .