Search results
Results from the WOW.Com Content Network
A model of the Transonic Truss-Braced Wing aircraft in a wind tunnel at NASA's Ames Research Center. By early 2019, following extensive wind tunnel testing at NASA Ames Research Center, an optimized truss and more sweep for the 170 ft (52 m) span wing allowed flying higher and faster, up from Mach 0.70–0.75 to Mach 0.80 like current jetliners. [3]
Illustration of the Boeing SUGAR Volt concept aircraft. SUGAR Volt is the hybrid aircraft concept proposed by a team led by Boeing's Research & Technology division. It is one of a series of concepts put forward in response to a request for proposals for future aircraft issued by NASA.
Marty Bradley is an American aerospace engineer who specializes in advanced propulsion, electric aircraft, and sustainable aviation. [2] He is a fellow of the American Institute of Aeronautics and Astronautics (AIAA), [3] an adjunct professor of aerospace and mechanical engineering practice at the University of Southern California (USC), [1] and a sustainable aviation consultant.
It’s called the Transonic Truss-Braced Wing concept, which relies on elongated, thin wings stabilized by diagonal struts that connect the wings to the aircraft. The design’s shape creates less ...
In aeronautics, bracing comprises additional structural members which stiffen the functional airframe to give it rigidity and strength under load. Bracing may be applied both internally and externally, and may take the form of struts, which act in compression or tension as the need arises, and/or wires, which act only in tension.
The ecoDemonstrator Program is a Boeing flight test research program, which has used a series of specially modified aircraft to develop and test aviation technologies designed to improve fuel economy and reduce the noise and ecological footprint of airliners.
For premium support please call: 800-290-4726 more ways to reach us
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.