Search results
Results from the WOW.Com Content Network
The sedimentation coefficient is typically dependent on the concentration of the solute (i.e. a macromolecular solute such as a protein). Despite 80+ years of study, there is not yet a consensus on the way to perfectly model this relationship while also taking into account all possible non-ideal terms to account for the diverse possible sizes, shapes, and densities of molecular solutes. [2]
The erythrocyte sedimentation rate (ESR or sed rate) is the rate at which red blood cells in anticoagulated whole blood descend in a standardized tube over a period of one hour. It is a common hematology test, and is a non-specific measure of inflammation .
The first and second terms on the right-hand side of the Lamm equation are proportional to D and sω 2, respectively, and describe the competing processes of diffusion and sedimentation. Whereas sedimentation seeks to concentrate the solute near the outer radius of the cell, diffusion seeks to equalize the solute concentration throughout the cell.
A laboratory ultracentrifuge. In chemistry, a Svedberg unit or svedberg (symbol S, sometimes Sv [a]) is a non-SI metric unit for sedimentation coefficients.The Svedberg unit offers a measure of a particle's size indirectly based on its sedimentation rate under acceleration (i.e. how fast a particle of given size and shape settles out of suspension). [1]
Sedimentation depends on mass, shape, and partial specific volume of a macromolecule, as well as solvent density, rotor size and rate of rotation. The sedimentation velocity can be monitored during the experiment to calculate molecular weight. Values of sedimentation coefficient (S) can be calculated. Large values of S (faster sedimentation ...
Sedimentation rate may refer to: Sedimentation rate of particles in a liquid, described by Stokes' law; Erythrocyte sedimentation rate, a medical test for inflammation;
Hints and the solution for today's Wordle on Friday, December 13.
Sedimentation time is longest for the finest particles, so this technique is useful for sizes below 10 μm, but sub-micrometer particles cannot be reliably measured due to the effects of Brownian motion. Typical apparatus disperses the sample in liquid, then measures the density of the column at timed intervals.