Search results
Results from the WOW.Com Content Network
The instruction cycle (also known as the fetch–decode–execute cycle, or simply the fetch–execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.
The instruction cycle (also known as the fetch–decode–execute cycle, or simply the fetch-execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.
The blue instruction, which was due to be fetched during cycle 3, is stalled for one cycle, as is the red instruction after it. Because of the bubble (the blue ovals in the illustration), the processor's Decode circuitry is idle during cycle 3. Its Execute circuitry is idle during cycle 4 and its Write-back circuitry is idle during cycle 5.
The data hazard is detected in the decode stage, and the fetch and decode stages are stalled - they are prevented from flopping their inputs and so stay in the same state for a cycle. The execute, access, and write-back stages downstream see an extra no-operation instruction (NOP) inserted between the LD and AND instructions.
In a typical fetch-decode-execute cycle, each step of a macro-instruction is decomposed during its execution so the CPU determines and steps through a series of micro-operations. The execution of micro-operations is performed under control of the CPU's control unit , which decides on their execution while performing various optimizations such ...
Nearly all CPUs follow the fetch, decode and execute steps in their operation, which are collectively known as the instruction cycle. After the execution of an instruction, the entire process repeats, with the next instruction cycle normally fetching the next-in-sequence instruction because of the incremented value in the program counter. If a ...
The first machine to use out-of-order execution was the CDC 6600 (1964), designed by James E. Thornton, which uses a scoreboard to avoid conflicts. It permits an instruction to execute if its source operand (read) registers aren't to be written to by any unexecuted earlier instruction (true dependency) and the destination (write) register not be a register used by any unexecuted earlier ...
The instruction unit (I-unit or IU), also called, e.g., instruction fetch unit (IFU), instruction issue unit (IIU), instruction sequencing unit (ISU), in a central processing unit (CPU) is responsible for organizing program instructions to be fetched from memory, and executed, in an appropriate order, and for forwarding them to an execution unit (E-unit or EU).