Search results
Results from the WOW.Com Content Network
In practice, testing measures are never perfectly consistent. Theories of test reliability have been developed to estimate the effects of inconsistency on the accuracy of measurement. The basic starting point for almost all theories of test reliability is the idea that test scores reflect the influence of two sorts of factors: [7]
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.
In statistics, inter-rater reliability (also called by various similar names, such as inter-rater agreement, inter-rater concordance, inter-observer reliability, inter-coder reliability, and so on) is the degree of agreement among independent observers who rate, code, or assess the same phenomenon.
Reliability cannot be estimated directly since that would require one to know the true scores, which according to classical test theory is impossible. However, estimates of reliability can be acquired by diverse means. One way of estimating reliability is by constructing a so-called parallel test. The fundamental property of a parallel test is ...
The source reliability is rated between A (history of complete reliability) to E (history of invalid information), with F for source without sufficient history to establish reliability level. The information content is rated between 1 (confirmed) to 5 (improbable), with 6 for information whose reliability can not be evaluated.
The first-order reliability method, (FORM), is a semi-probabilistic reliability analysis method devised to evaluate the reliability of a system. The accuracy of the method can be improved by averaging over many samples, which is known as Line Sampling .