enow.com Web Search

  1. Ad

    related to: fire hydrant flow calculation formula example

Search results

  1. Results from the WOW.Com Content Network
  2. K-factor (fire protection) - Wikipedia

    en.wikipedia.org/wiki/K-factor_(fire_protection)

    In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.

  3. Water flow test - Wikipedia

    en.wikipedia.org/wiki/Water_flow_test

    The flow hydrant is fitted with a diffuser device containing a pitot tube that measures stagnation pressure in the middle of the stream while the hydrant is flowing. First, a static pressure gauge is attached to the test hydrant and the static water pressure is measured at the test hydrant. Second, the flow hydrant opened to allow water to flow ...

  4. Hydraulic calculation - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_calculation

    The hydraulic calculation procedure is defined in the applicable reference model codes such as that published by the US-based National Fire Protection Association (NFPA), [2] or the EN 12845 standard, Fixed firefighting system – Automatic sprinkler systems – Design, installation and maintenance.

  5. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  6. Fire hydrant - Wikipedia

    en.wikipedia.org/wiki/Fire_hydrant

    The user (most likely a fire department) attaches a hose to the fire hydrant, then opens a valve on the hydrant to provide a powerful flow of water, on the order of 350 kilopascals (51 psi); this pressure varies according to region and depends on various factors (including the size and location of the attached water main).

  7. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  1. Ad

    related to: fire hydrant flow calculation formula example