Search results
Results from the WOW.Com Content Network
In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =
Taking the short and long time limits of the above equation reveals two main modes of operation. The first mode, where the growth is linear, occurs initially when + is small. The second mode gives a quadratic growth and occurs when the oxide thickens as the oxidation time increases.
Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.
Roughly, the fluctuation theorem relates to the probability distribution of the time-averaged irreversible entropy production, denoted ¯.The theorem states that, in systems away from equilibrium over a finite time t, the ratio between the probability that ¯ takes on a value A and the probability that it takes the opposite value, −A, will be exponential in At.
In the more common Schrödinger picture, even the states of free particles change over time: typically the phase changes at a rate that depends on their energy. In the alternative Heisenberg picture, state vectors are kept constant, at the price of having the operators (in particular the observables) be time-dependent. The interaction picture ...
There is actually an intuitive connection between the time evolution of correlation functions and the time evolution of macroscopic systems: on average, the correlation function evolves in time in the same manner as if a system was prepared in the conditions specified by the correlation function's initial value and allowed to evolve. [7]