enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decomposition method - Wikipedia

    en.wikipedia.org/wiki/Decomposition_method

    Decomposition method is a generic term for solutions of various problems and design of algorithms in which the basic idea is to decompose the problem into subproblems. The term may specifically refer to: Decomposition method (constraint satisfaction) in constraint satisfaction

  3. Polynomial decomposition - Wikipedia

    en.wikipedia.org/wiki/Polynomial_decomposition

    In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.

  4. Decomposition of a module - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_a_module

    A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).

  5. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Decomposition: This is a version of Schur decomposition where and only contain real numbers. One can always write A = V S V T {\displaystyle A=VSV^{\mathsf {T}}} where V is a real orthogonal matrix , V T {\displaystyle V^{\mathsf {T}}} is the transpose of V , and S is a block upper triangular matrix called the real Schur form .

  7. Proper orthogonal decomposition - Wikipedia

    en.wikipedia.org/.../Proper_orthogonal_decomposition

    The first idea behind the Proper Orthogonal Decomposition (POD), as it was originally formulated in the domain of fluid dynamics to analyze turbulences, is to decompose a random vector field u(x, t) into a set of deterministic spatial functions Φ k (x) modulated by random time coefficients a k (t) so that:

  8. Modular decomposition - Wikipedia

    en.wikipedia.org/wiki/Modular_decomposition

    The decomposition depicted in the figure below is this special decomposition for the given graph. A graph, its quotient where "bags" of vertices of the graph correspond to the children of the root of the modular decomposition tree, and its full modular decomposition tree: series nodes are labeled "s", parallel nodes "//" and prime nodes "p".

  9. Benders decomposition - Wikipedia

    en.wikipedia.org/wiki/Benders_decomposition

    Benders decomposition (or Benders' decomposition) is a technique in mathematical programming that allows the solution of very large linear programming problems that have a special block structure. This block structure often occurs in applications such as stochastic programming as the uncertainty is usually represented with scenarios.