Search results
Results from the WOW.Com Content Network
Model-based assumptions. These include the following three types: Distributional assumptions. Where a statistical model involves terms relating to random errors, assumptions may be made about the probability distribution of these errors. [5] In some cases, the distributional assumption relates to the observations themselves. Structural assumptions.
Modern proof theory treats proofs as inductively defined data structures, not requiring an assumption that axioms are "true" in any sense. This allows parallel mathematical theories as formal models of a given intuitive concept, based on alternate sets of axioms, for example Axiomatic set theory and Non-Euclidean geometry.
The i.i.d. assumption is also used in the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution. [4] The i.i.d. assumption frequently arises in the context of sequences of random variables. Then, "independent and identically ...
Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six-sided dice. We will study two different statistical assumptions about the dice.
However, there are differences. For example, the randomization-based analysis results in a small but (strictly) negative correlation between the observations. [27] [28] In the randomization-based analysis, there is no assumption of a normal distribution and certainly no assumption of independence. On the contrary, the observations are dependent!
Since stationarity is an assumption underlying many statistical procedures used in time series analysis, non-stationary data are often transformed to become stationary. The most common cause of violation of stationarity is a trend in the mean, which can be due either to the presence of a unit root or of a deterministic trend.
For example, the residuals between the data and a statistical model cannot be distinguished from random noise. If true, there is no justification for complicating the model. Scientific null assumptions are used to directly advance a theory. For example, the angular momentum of the universe is zero.
Data assimilation is a mathematical discipline that seeks to optimally combine theory (usually in the form of a numerical model) with observations. There may be a number of different goals sought – for example, to determine the optimal state estimate of a system, to determine initial conditions for a numerical forecast model, to interpolate sparse observation data using (e.g. physical ...