Search results
Results from the WOW.Com Content Network
Setting aside other factors (e.g., balancing selection, and genetic drift), the equilibrium number of deleterious alleles is then determined by a balance between the deleterious mutation rate and the rate at which selection purges those mutations. Mutation–selection balance was originally proposed to explain how genetic variation is ...
In genetics, the K a /K s ratio, also known as ω or d N /d S ratio, [a] is used to estimate the balance between neutral mutations, purifying selection and beneficial mutations acting on a set of homologous protein-coding genes.
The McDonald–Kreitman test [1] is a statistical test often used by evolutionary and population biologists to detect and measure the amount of adaptive evolution within a species by determining whether adaptive evolution has occurred, and the proportion of substitutions that resulted from positive selection (also known as directional selection).
Balancing selection refers to a number of selective processes by which multiple alleles (different versions of a gene) are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. [1]
Selection coefficient, usually denoted by the letter s, is a measure used in population genetics to quantify the relative fitness of a genotype compared to other genotypes. . Selection coefficients are central to the quantitative description of evolution, since fitness differences determine the change in genotype frequencies attributable to selecti
The adaptive value can be measured by contribution of an individual to the gene pool of their offspring. The adaptive values are approximately calculated from the rates of change in frequency and mutation–selection balance. [2]
Scientists thought that Lake Enigma was frozen from top to bottom. Then they discovered that water—and mysterious lifeforms—existed 11 meters below the surface.
The Haldane-Muller theorem of mutation–selection balance says that the load depends only on the deleterious mutation rate and not on the selection coefficient. [6] Specifically, relative to an ideal genotype of fitness 1, the mean population fitness is exp ( − U ) {\displaystyle \exp(-U)} where U is the total deleterious mutation rate ...