Search results
Results from the WOW.Com Content Network
In probability theory, the birthday problem asks for the probability that, in a set of n randomly chosen people, at least two will share the same birthday. The birthday paradox is the counterintuitive fact that only 23 people are needed for that probability to exceed 50%.
A birthday attack is a bruteforce collision attack that exploits the mathematics behind the birthday problem in probability theory. This attack can be used to abuse communication between two or more parties. The attack depends on the higher likelihood of collisions found between random attack attempts and a fixed degree of permutations ...
Pages in category "Probability theory paradoxes" The following 21 pages are in this category, out of 21 total. ... Birthday problem; Borel–Kolmogorov paradox; Boy ...
But given the number of people, what is the probability of every day in the year being someone's birthday? For 1 to 364 people, it is 0, i.e. such a thing is impossible. For exactly 365 people, it is 1/(365!), i.e. 1 divided by the factorial of 365. But what is the probability for larger groups? (For simplicity, we ignore leap years.)
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
English: In probability theory, the birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99% ...
This is a list of probability topics. It overlaps with the (alphabetical) list of statistical topics. There are also the outline of probability and catalog of articles in probability theory. For distributions, see List of probability distributions. For journals, see list of probability journals.
The birthday problem asks, for a set of n randomly chosen people, what is the probability that some pair of them will have the same birthday? The problem itself is mainly concerned with counterintuitive probabilities, but we can also tell by the pigeonhole principle that among 367 people, there is at least one pair of people who share the same ...