Search results
Results from the WOW.Com Content Network
When further backtracking or backjumping from the node, the variable of the node is removed from this set, and the set is sent to the node that is the destination of backtracking or backjumping. This algorithm works because the set maintained in a node collects all variables that are relevant to prove unsatisfiability in the leaves that are ...
Goal-directed programming languages such as Icon, Planner and Prolog, which use backtracking internally to generate answers. The DPLL algorithm for solving the Boolean satisfiability problem . The following is an example where backtracking is used for the constraint satisfaction problem :
In a general constraint satisfaction problem, every variable can take a value in a domain. A backtracking algorithm therefore iteratively chooses a variable and tests each of its possible values; for each value the algorithm is recursively run. Look ahead is used to check the effects of choosing a given variable to evaluate or to decide the ...
In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.
Constraint satisfaction toolkits are software libraries for imperative programming languages that are used to encode and solve a constraint satisfaction problem. Cassowary constraint solver, an open source project for constraint satisfaction (accessible from C, Java, Python and other languages). Comet, a commercial programming language and toolkit
Constraint programming is an embedding of constraints in a host language. The first host languages used were logic programming languages, so the field was initially called constraint logic programming. The two paradigms share many important features, like logical variables and backtracking.
It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem. [1] Algorithm X is a recursive , nondeterministic , depth-first , backtracking algorithm that finds all solutions to the exact cover problem.
Algorithm X is an algorithm for solving the exact cover problem. It is a straightforward recursive , nondeterministic , depth-first , backtracking algorithm used by Donald Knuth to demonstrate an efficient implementation called DLX, which uses the dancing links technique.