enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  3. Implicit graph - Wikipedia

    en.wikipedia.org/wiki/Implicit_graph

    In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...

  4. External memory graph traversal - Wikipedia

    en.wikipedia.org/wiki/External_memory_graph...

    For external memory algorithms the external memory model by Aggarwal and Vitter [1] is used for analysis. A machine is specified by three parameters: M, B and D.M is the size of the internal memory, B is the block size of a disk and D is the number of parallel disks.

  5. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

  6. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    Any vertex that is not on a directed cycle forms a strongly connected component all by itself: for example, a vertex whose in-degree or out-degree is 0, or any vertex of an acyclic graph. The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on ...

  7. Kosaraju's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kosaraju's_algorithm

    Provided the graph is described using an adjacency list, Kosaraju's algorithm performs two complete traversals of the graph and so runs in Θ(V+E) (linear) time, which is asymptotically optimal because there is a matching lower bound (any algorithm must examine all vertices and edges).

  8. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    For each vertex we store the list of adjacencies (out-edges) in order of the planarity of the graph (for example, clockwise with respect to the graph's embedding). We then initialize a counter = + and begin a Depth-First Traversal from . During this traversal, the adjacency list of each vertex is visited from left-to-right as needed.

  9. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    It is possible to find the maximum clique, or the clique number, of an arbitrary n-vertex graph in time O (3 n/3) = O (1.4422 n) by using one of the algorithms described above to list all maximal cliques in the graph and returning the largest one. However, for this variant of the clique problem better worst-case time bounds are possible.

  1. Related searches dfs with adjacency list in c++ 8 1 example exercises class

    linked list in c++