Ad
related to: how to find potential gradient formula in excel
Search results
Results from the WOW.Com Content Network
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
For this the gravitational force, i.e. the gradient of the potential, must be computed. Efficient recursive algorithms have been designed to compute the gravitational force for any N z {\displaystyle N_{z}} and N t {\displaystyle N_{t}} (the max degree of zonal and tesseral terms) and such algorithms are used in standard orbit propagation software.
The gradient of a function is called a gradient field. A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative ...
Again by the Poincaré lemma (and under its assumptions), gauge freedom is the only source of indeterminacy, so the field formulation is equivalent to the potential formulation if we consider the potential equations as equations for gauge equivalence classes. The potential equations can be simplified using a procedure called gauge fixing.
Equivalent potential temperature, commonly referred to as theta-e (), is a quantity that is conserved during changes to an air parcel's pressure (that is, during vertical motions in the atmosphere), even if water vapor condenses during that pressure change.
The vector potential admitted by a solenoidal field is not unique. If is a vector potential for , then so is +, where is any continuously differentiable scalar function. . This follows from the fact that the curl of the gradient is ze
The concept of potential temperature applies to any stratified fluid. It is most frequently used in the atmospheric sciences and oceanography. [2] The reason that it is used in both fields is that changes in pressure can result in warmer fluid residing under colder fluid – examples being dropping air temperature with altitude and increasing water temperature with depth in very deep ocean ...
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
Ad
related to: how to find potential gradient formula in excel