Search results
Results from the WOW.Com Content Network
Other papers have considered that local bending at the nanoscale produces voltages which help drive charge transfer via the flexoelectric effect. [61] [62] There are also suggestions that surface or trapped charges are important. [63] [64] More recently there have been attempts to include a full solid state description. [65] [66] [67] [58]
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...
Download as PDF; Printable version; In other projects ... move to sidebar hide. Charge-transfer may refer to: Intervalence charge transfer; Charge-transfer complex ...
The charge remains until it can move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor. [1] A static electric charge can be created whenever two surfaces contact and or slide against each other and then separate.
Crystalline solids and molecular solids are two opposite extreme cases of materials that exhibit substantially different transport mechanisms. While in atomic solids transport is intra-molecular, also known as band transport, in molecular solids the transport is inter-molecular, also known as hopping transport.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The abscissa is the transferred amount of charge Δe or the induced polarization P, the ordinate the Gibbs free energy. ΔG(0) ‡ = λ o /4 is the reorganization energy at Δe = 0.5, it corresponds to the activation energy of the self-exchange reaction. Of course, in this classical model the transfer of any arbitrary amount of charge Δe is ...
This is known as the charge transfer rate. The second is the rate at which reactants are provided, and products removed, from the electrode region by various processes including diffusion, migration, and convection. The latter is known as the mass-transfer rate [Note 1]. These two rates determine the concentrations of the reactants and products ...