Search results
Results from the WOW.Com Content Network
The Cahill cycle, also known as the alanine cycle or glucose-alanine cycle, [1] is the series of reactions in which amino groups and carbons from muscle are transported to the liver. [2] It is quite similar to the Cori cycle in the cycling of nutrients between skeletal muscle and the liver. [ 1 ]
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.
Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1]
Regulation of glyceroneogenesis is a therapeutic target of type 2 diabetes treatment, specifically inhibiting it in the liver and increasing it in adipose tissues. Insulin down-regulates glyceroneogenesis in the liver, but it also suppresses it in adipose tissue. To restrict the release of free fatty acids from adipose tissues ...
For premium support please call: 800-290-4726 more ways to reach us
Glutamate in the liver enters mitochondria and is broken down by glutamate dehydrogenase into α-ketoglutarate and ammonium, which in turn participates in the urea cycle to form urea which is excreted through the kidneys. [23] The glucose–alanine cycle enables pyruvate and glutamate to be removed from muscle and safely transported to the liver.
Consultant interventional radiologist Dr Brian Stedman said his team had performed 300 procedures in 100 patients whose form of eye cancer known as ocular melanoma had spread to the liver, called ...
The tricarboxylic acid cycle (TCA) and glutaminolysis can also be targeted for cancer treatment, since they are essential for the survival and proliferation of cancer cells. Ivosidenib and enasidenib , two FDA-approved cancer treatments, can arrest the TCA cycle of cancer cells by inhibiting isocitrate dehydrogenase-1 (IDH1) and isocitrate ...