Search results
Results from the WOW.Com Content Network
Hadamard matrix of order 16 multiplied with a vector Naturally ordered Hadamard matrix permuted into sequency-ordered Walsh matrix. The number of sign changes per row in the naturally ordered matrix is (0, 15, 7, 8, 3, 12, 4, 11, 1, 14, 6, 9, 2, 13, 5, 10), in the sequency-ordered matrix the number of sign changes is consecutive.
The generator is used in evolution equations such as the Kolmogorov backward equation, which describes the evolution of statistics of the process; its L 2 Hermitian adjoint is used in evolution equations such as the Fokker–Planck equation, also known as Kolmogorov forward equation, which describes the evolution of the probability density ...
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
A stochastic matrix describes a Markov chain X t over a finite state space S with cardinality α.. If the probability of moving from i to j in one time step is Pr(j|i) = P i,j, the stochastic matrix P is given by using P i,j as the i-th row and j-th column element, e.g.,
In bioinformatics and evolutionary biology, a substitution matrix describes the frequency at which a character in a nucleotide sequence or a protein sequence changes to other character states over evolutionary time.
Xcas can solve equation, calculate derivative, antiderivative and more. Figure 3. Xcas can solve differential equations. Xcas is a user interface to Giac, ...
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1]